
i

J

| |

I !

z ,

_L

NAS A/CR-2000-210080

ICASE Report No. 2000-2

Achieving High Sustained Performance in an

Unstructured Mesh CFD Application

W.K. Anderson

NASA Langley Research Center, Hampton, Virginia

W.D. Gropp and D.K. Kaushik

Argonne National Laboratory, Argonne, Illinois

D.E. Keyes
Old Dominion University, Norfolk, Virginia, Lawrence Livermore National

Laboratory, Livermore, California, and ICASE, Hampton, Virginia

B.F. Smith

Argonne National Laboratory, Argonne, Illinois

January2000
I

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead ccntcr for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepagc.html

• Email your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2000-210080

ICASE Report No. 2000-2

Achieving High Sustained Performance in an

Unstructured Mesh CFD Application

W.K. Anderson

NASA Langley Research Center, Hampton, Virginia

W.D. Gropp and D.K. Kaushik

Argonne National I.xlboratory, Argonne, Illinois

D.E. Keyes

Old Dominion University, Norfolk, Virginia, Lawrence Livermore National

Laboratory, Livermore, California, and ICASE, Hampton, Virginia

B.F. Smith

Argonne National I__lboratory, Argonne, Illinois

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

January2000

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

ACHIEVING HIGH SUSTAINED PERFORMANCE IN AN UNSTRUCTURED MESH

CFD APPLICATION

W.K. ANDERSON*, W.D. GROPP t, D.K. KAUSHIK_, D.E. KEYES§, AND B.F.S.X:IVI'H ¶

Abstract. This paper highlights a three-year project by an interdisciplinary team on a legacy F77

computational fluid dynamics code, with the aim of demonstrating that implicit unstructured grid simulations

can execute at rates not far from those of explicit structured grid codes, provided attention is paid to

data motion complexity and the reuse of data positioned at the levels of the memory hierarchy closest

to the processor, in addition to traditional operation count complexity. The demonstration code is from

NASA and the enabling parallel hardware and (freely available) software toolkit are from DOE, but the

resulting methodology should be broadly applicable, and the hardware limitations exposed should allow

programmers and vendors of parallel platforms to focus with greater encouragement on sparse codes with

indirect addressing. This snapshot of ongoing work shows a performance of 15 microseconds per degree

of freedom to steady-state convergence of Euler flow on a mesh with 2.8 million vertices using 3072 dual-

processor nodes of Sandia's "ASCI Red" Intel machine, corresponding to a sustained floating-point rate of

0.227 Tfiop/s.

Key words, high-performance computing, parallel implicit solvers, computational aerodynamics, memory-

centric computation

Subject classification. Computer Science

1. Overview. Many applications of economic and national security importance require the solution of

nonlinear partial differential equations (PDEs). In many cases, PDEs possess a wide range of time scales--

some (e.g., acoustic) faster than the phenomena of prime interest (e.g., convective), suggesting the need

for implicit methods. In addition, many applications are geometrically complex and possess a wide range

of length scales. Unstructured meshes are often employed in such cases to accomplish mesh generation

and adaptation (ahnost) automatically and to resoh,e the PDE without requiring an excessive mmfi)er

of mesh points. The best algorithms for solving nonlinear implicit problems are often Newton methods,

which themselves require the solution of very large, sparse linear systems. The best algorithms for these

sparse linear prol)lems, particularly at very large sizes, are often preconditioned iterative methods. This

*Fluid Mechanics and Acoustics Division, NASA Langley Research Center, Hampton, VA 23682,

w.k. anderson©lar c.nasa. gov.

'H_,Iathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, gropp_acs.anl.gov. This

work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office

of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract %V-31-109-Eng-38.

;tMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 and Computer Science

Department, Old Dominion University, Norfolk, VA 23529, kaushik©cs.odu.edu. This work was supported by a GAANN

Fellowship from the U.S. Department of Education and by Argonne National Laboratory under Contract 983572401.

§Mathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529, ISCR, Lawrence Livermore National

Laboratory, Livermore, CA 94551, and ICASE, NASA Langley Research Center, Hampton, VA 23681, keyes©icase.edu. This

work was supported by the National Science Foundation under Grant ECS-9527169, by NASA under Contract Nos. NAS1-97046

and NAS1-19480 (while the author was in residence at ICASE), by Argonne National Laboratory under Contract 982232402,

and by Lawrence Livermore National Laboratory under Subcontract B347882.

¶N'Iathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, bsmithChncs .anl.gov. This

work was supported in part by the Mathernatica[, Information, and Computational Sciences Division subprogram of the Office

of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

nested hierarchy of tunable algorithms has proved effective in soh'ing complex problems in areas such as

aerodynamics, combustion, radiation transport., and global circulation. Typically, for steady-state solutions

from a trivial initial guess, the mlmber of "work units" (evaluations of the discrete residuals on the finest

mesh on which the problem is represented) is around 103 (to achieve reductions ill the norm of the residual

of 10 -s to 10-12). Although these algorithms are efficient (in the sense of using relatively few floating-point

operations to arrive at. the final result.), they do not necessarily achieve the absolute flops-per-second (flop/s)

ratings that less efficient or less versatile algorithms may [3].

Our submission focuses on the time to solution rather than the achieved fioating-point performance as

the figure of merit. We have achieved a performance of 15 microseconds per degree of freedom on a mesh

with 2.8 million vertices using 3072 dual-processor nodes of ASCI Red, and 36 microseconds per degree

of freedom on 1024 processors of an SGI/Cray T3E. These fig]ires correspond to sustained floating-point

rates of 227 Gflop/s and 76 Gflop/s, respectively. The code is also nearly scalable, showing linear scaling in

computation rate between 128 and 3072 nodes for a fixed-size problem, and only a modest degradation in

algebraic convergence rate over the same range.

The code spends almost all of its time in two phases: flux computations (to evaluate conservation law

residuals) and sparse linear algebraic kernels. The linear algebraic kernels run at close to the aggregate

memory-bandwidth limit on performance (as determined by the STREAM benchmarks [15]), and the flux

computations are bounded either by memory bandwidth or instruction scheduling (see the analysis in [8]).

This level of performance (in excess of 100 Gflop/s) is well above what is commonly considered achievable

for sparse-matrix and unstructured mesh computations and requires a combination of scalable algorithms

and data structure optimizations, as well as powerful, tightly networked computers. See, for example, the

comments by the "High End Crusader" [6, 7], who has called for a benchmark to focus attention on the

difficult,,, of sparse, unstructured problems.

As a bonus, our message-passing code relies on no special architectural features or proprietary com-

piler licenses, but is based on the MPI standard, allowing the application to take advantage of continuing

improvements in hardware performance without further software development.

2. The Application. The application code, FUN3D, is a tetrahedral vertex-centered unstructured

mesh code developed by W. K. Anderson of the NASA Langley Research Center for compressible and

incompressible Euler and Navier-Stokes equations [1, 2]. FUN3D uses a control volume discretization with

variable-order Roe schemes for approximating the convective fluxes and a Galerkin discretization for the

viscous terms. FUN3D is being used for design optimization of airplanes, automobiles, and submarines, with

irregular meshes comprising several million mesh points. The optinfization loop involves many analysis cycles.

Thus, reaching the steady-state solution in each analysis cycle in a reasonable amount of time is crucial to

conducting the design optimization. From the beginning, our effort has been focused on minimizing the time

to convergence without compromising scalability, by means of appropriate algorithms and architecturally

efficient data structures.

We have ported FUN3D into PETSc framework and tuned it for good cache performance and distributed

parallel systems, using the single program multiple data (SPMD) programming model. This new variant

(PETSc-FUN3D) is being used to run Navier-Stokes applications with the Spalart-Almaras turbulence model

[17] on modest-sized problems, and we expect to scale up these more phenomenologically complex problems

in coming months, while also beginning to cope with parallelization of the preprocessing.

Thus far, our large-scale parallel experience with PETSc-FUN3D is with the compressible or incom-

pressible Euler subset, but nothing in the solution algorithms or software changes with additional physical

phenomenology.Ofcourse,tile convergenceratewill varywithconditioning,asdeterminedby Machand
Reynoldsnumbersandthecorrespondinglyinducedmeshadaptivity.Furthermore,robustnessbecomesmore
of anissuein problemsadmittingshocksorusingturbulencemodels.Thelackof nonlinearrobustnessisa
factof life that is largelyoutsideof thedomainof parallelscalability.In fact,whennonlinearrobustness
is restoredin theusualmanner,throughpseudo-transientcontinuation,the conditioningof the linearin-
neriterationsis enhanced,andparallelscalahilitymaybeimproved.In somesense,theEulercode,with
its smallernumberof flopsperpointperiteration,andits aggressivepseudotransientbuilduptowardthe
steady-statelimit,maybea more,not less,severetestof parallelperformance.

3. Algorithms and Data Structures. Achievinghighsustainedperformance,in termsof solutions
persecond,involvesthreeaspects.Thefirst isa scalablealgorithmin thesenseof convergencerate. The
secondis goodper-processorperformanceoncontemporarycache-basedmicroprocessors.Thethird is a
scalableimplementation,in thesenseof timeper iterationasthe numberof processorsincreases.Our
nonlinearmethod,pseudo-transientNewton-Krylov-Schwarz(_NKS),isanefficientalgorithm,asthechart
of nonlineariterationsin Figure5.1shows.Theper-processorperformanceisalsoquitegood;in fact,it is
closeto thememory-bandwidthlimit (amorerealisticmeasureofachievableperformancethanpeakfloating-
pointforsparseproblems[8]).Moreover,onanyarchitecturewithasufficientlyrichinterconnectionnetwork,
a2NKS leads to good per-iteration scalability, as argued from a simple analytical model in [14].

3.1. _NKS Solver. Our implicit algorithmic framework for advancing toward an assumed steady

state, f(u) = 0, has the form (.a@)u _+ f(u') = (a-!v)u _-1, where At e _ oc as /' _ oc, u represents the fully

coupled vector of unknowns, and f(u) is the vector of nonlinear conservation laws.

Each member of the sequence of nonlinear problems, _ = 1, 2,..., is solved with an inexact Newton

inethod. The resulting Jacobian systems for the Newton corrections are solved with a Krylov method, relying

directly only on matrix-free operations. The Krylov method needs to be preconditioned for acceptable inner

iteration convergence rates, and the preconditioning can be the "make-or-break" feature of an implicit code.

A good preconditioner saves time and space by permitting fewer iterations in the Krylov loop and smaller

storage for the Krylov snt)space. An additive Schwarz preconditioner [5] accomplishes this in a concurrent,

localized manner, with an approximate solve in each subdomain of a partitioning of the global PDE domain.

The coefficients for the preconditioning operator are derived from a lower-order, sparser, and more diffusive

discretization than that used for f(u), itself. Applying any preconditioner in an additive Schwarz manner

tends to increase flop rates over the same preconditioner applied globally, since the smaller subdomain blocks

maintain better cache residency, even apart from concurrency considerations [18]. Combining a Schwarz

preconditioner with a Krylov iteration method inside an inexact Newton method leads to a synergistic,

parallelizable nonlinear boundary value problem solver with a classical name: Newton-Krylov-Schwarz (NKS)

[9]. We combine NKS with pseudo-timestepping [13] and use the shorthand ONKS to describe the algorithm.

To implement this algorithm in FUN3D, we employ the PETSc package [4], which features distributed

data structures index sets, vectors, and matrices as fundamental objects. Iterative linear and nonlinear

solvers are implemented within PETSc in a data structure-neutral manner, providing a uniform application

programmer interface. Portability is achieved in PETSc through MPI, but message-passing detail is not

required in the application. We use MeTiS [10] to partition the unstructured mesh.

3.2. Memory-Centric Computation. We view a PDE computation predominantly as a mix of loads

and stores with embedded floating-point operations (flops). Since flops are cheap relative to memory refer-

ences, we concentrate on minimizing the memory references and emphasize strong sequential performance as

180-

160-

140-

120-

100-

80-

60-

40-

20-

O-

• Base NOER • Interhcmg NOER Q Bbckmg NOER

• Base • Interhcmg • Bbc_ng

SP Origin Pentium

FTC. 3.l. The effect of cache optimizations on the average execution time for one nonlinear iteration. BASE denotes the

case without any optimizations, and NOER denotes no edge reordering. The performance improves by a factor of about 2.5

on the Pentium and 7.5 on the IBM SP. The processor details are: 120 MHz IBM SP (P2SC "thin", 128 KB LI), 250 MHz

Origin 2000 (RIO000, 32 KB LI, and 4 MB L2), 400 Mtlz Pentium II (running Windows NT 4.0, 16 KB L1, and 512 KB

L2).

one of the factors needed for aggregate performance worthy of the theoretical peak of a parallel machine. We

use interlacing (creating spatial locality for the data items needed suceessively in time), structural blocking

for a multicomponent system of PDEs (cutting the number of integer loads significantly, and enhancing

reuse of data iteins in registers), and vertex and edge reorderings (increasing the level of temporal locality).

Applying these techniques required whole-program transformations of certain loops of the original vector-

oriented FUN3D, but raised the per-processor performance by a factor of between 2.5 and 7.5 (Figure 3.1),

depending on the microprocessor and optimizing compiler [12].

The importance of memory bandwidth to the overall pcrforrnance is suggested by the single-processor

performance of PETSc-FUN3D shown in Figure 3.2. The performance of PETSc-FUN3D is compared to the

peak performance and the result of the STREAM benchmark [15] which measures achievable performance

for memory bandwidth-limited computations. These comparisons show that the STREAM results are much

better indicators of realized performance than the peak numbers. The parts of the code that are memory

bandwidth-linfited (like the sparse triangular matrix solution phase, which is responsible for 257c of the overall

execution time) are bound to show poor performance, as compared to dense matrix-matrix operations, which

often come within 10 20% of peak. Even parts of the code that are not memory intensive often achieve much

less than peak performance because of the limits on the number of basic operations that can be performed

in a single clock cycle [8]. This is true for the flux calculation routine in PETSc-FUN3D, which consumes

over 50% of the overall execution time. Instruction scheduling limits the performance to 47% of the peak on

250 MHz SGI Origin 2000 even under a perfect memory system (leading to an estimate of 235 Mflops/s),

which is close to the value of 209 Mflops/s experimentally measured by the Origin's hardware counters.

The basic philosophy of any efficient parallel computation is "owner computes," with message merging

and overlapping communication with computation where possible via split transactions. Each processor

::ghosts" its stencil dependencies on its neighbors' data. Grid functions are mapped from a global (user)

IIPeak Mflops/s 1Stream Triad M flops/s DObserved _'rl flops[S

900 -

800

700

600

500

400 -

300 -

200-

100-

0-

SP Origin T3E

FIG 3.2. Sequential performance of PETSc-FUN3D for a coarse mesh of 22,677 vertices (with 4 unknowns per vertex).

The processor detail_ for IBM SP artd Origin 2000 aT_e the same as in Figure 3. l. The SGI/Cray T3E is based on a 450 MHz

DEC Alpha 2ll64 with 8 KB LI cache and 96 KB unified L2 cache.

ordering into contiguous local orderings (which, in unstructured cases, are designed to maximize spatial

locality for cache line reuse). Scatter/gather operations are created between local sequential vectors and

global distributed vectors, based on runtime-deduced connectMty patterns.

4. Measuring the Parallel Performance. We use PETSc's profiling and logging features to measure

the parallel performance. PETSc logs many different types of events and provides valuable information about

time spent, communications, load balance, and so forth, for each logged event. PETSc uses manual counting

of flops, which are afterwards aggregated over all the processors for parallel performance statistics. We

have observed that the flops reported by PETSc are close to (within l0 percent of) the values statistically

measured by hardware counters on R10000 processor.

PETSc uses the best timers available in each processing environment. In our rate computations, we

exclude the initialization time devoted to I/O and data partitioning. To suppress timing variations caused

by paging in the executable from disk, we preload the code into memory with one nonlinear iteration, then

flush, reload the initial iterate, and begin performance measurements.

Since we are solving large fixed-size problems on distributed memory machines, it is not reasonable to

base parallel scalability on a uniprocessor run, which would thrash the paging system. Our base processor

number is such that the problem has just fit into the local memory. We have employed smaller sequential

cases to optimize cached data reuse [11, 12] to minimize the execution time. In the results below, we

decompose the parallel efficiency into two factors: algorithmic efficiency, measuring the effect of increased

granularity on the number of iterations to convergence, and implementation efficiency, measuring the effect

of increased granularity on per-iteration performance.

5. Scalability Studies. We present three aspects of scalability in this section. Throughout we use

unstructured tetrahedral meshes of the standard Onera M6 wing closed with a symmetry plane inboard,

prepared for us by colleagues at the NASA Langley Research Center. On the two machines with the finest

granularity available to us to date, a Cray T3E with 1024 600 MHz Alpha processors and a partition of

ASCIRedwith 3072333l_IHzPentiumProdual-processornodes,weshowseveralmetricsof fixed-size
scalabilityonourfinestmesh.Oilmachinesrepresentativeof thetwoASCIBluemachines(anIBMSPand
anSGIOrigin)andona T3Ewith 450MHzprocessors,wecompareexecutionsof thesamecodeon an
intermediatefixed-sizeproblemonup to 80processors(themaximumavailableonourSPconfiguration).
Finally,to conveysomeideaofthesensitivityoftheNewtonmethodto theseverityof thenonlinearity,and
of thesensitivityof thepreconditionedKrylovsolverwith respectto differentconditioninginheritedfrom
differentMachnumbersofthesimulation,wepresentsomecomparisonsacrossl_Iachnumber(incompressible
to supersonic).Thisstud)'alsogivesanindicationofthesensitivityofthefloatingpointperformanceto the
blocksizeoftheunknownvector,whichis fourin theincompressiblecaseandfivein thecompressiblecases.

5.1. Parallel Scalability on the T3E. The parallel scalability of PETSc-FUN3D is shown in Fig-

ure 5.1 for a mesh with 2.8 million vertices running on up to 1024 Cray T3E processors. We see that the

implementation efficiency of parallelization (i.e., the efficiency on a per-iteration basis) is 82 percent in going

froln 128 to 1024 processors. The mlmber of iterations is also fairly flat over the same eightfold range of

processor number (rising from 37 to 42), reflecting reasonable algorithmic scalability. This is much less

serious degradation than predicted by the linear elliptic theory (see [16]); pseudo-timestepping required by

the nonlinearity is responsible. The overall efficiency is the product of the implementation efficiency and

the algorithmic efficiency. The Mflop/s per processor are also close to fiat over this range, even though the

relevant working sets in each subdomain vary by nearly a factor of eight. This emphasizes the requirement

of good serial performance for good parallel performance.

5.2. Parallel Scalability on ASCI Red. The same fixed-size problem is run on large ASCI Red

configurations with sample scaling results shown in Figure 5.2. The implementation efficiency is 94% in

going from 256 to 2048 nodes (and 95_, in going from 128 to 2048 nodes, due to slightly worse cache

performance in the 128-node run). For the data in Figure 5.2, we employed the -procs 1 runtime option on

ASCI Red, which dedicates a communication processor to every execution processor. The -procs 2 runtime

option enables 2-processor-per-node multithreading during threadsafe, communication-free portions of the

code. We have activated this feature for the floating-point-intensive flux computation subroutine alone. On

2048 nodes, the resulting Gflop/s rate is 156, or 30% greater than for the single-threaded case on the same

number of nodes. On 3072 nodes, the largest run we have been able to make on the unclassified side of the

machine to date, the resulting GFlop/s rate is 227. Undoubtedly, further improvements to the algebraic

solver portion of the code are also possible through multithreading, but the additional coding work does not

seem justified at present.

5.3. Parallel Scalability across Architectures. Cross-platform performance comparisons of a medium-

size wing problem over a common set of processor numbers are given in Table 1, which lists overall efficiencies.

The 16-processor run has approximately 22,369 vertices per processor; the 80-processor run has approxi-

mately 4,473. Decreasing volume-to-surface ratios in the subdomains and increasing depth of the global

reduction spanning tree of the processors lead to gradually decaying efficiency. The convergence rate, in

terms of pseudo-time steps to achieve a relative reduction of steady-state residual norm of 10 -12, degrades

only slowly with increased partitioning. Exactly one Newton iteration is performed on each pseudo-time

step, and the Krylov space restart size is 30, with a maximum of one restart. The slight differences in the

numbers of timesteps arise froIn slightly different floating point arithmetic and/or noncommutative sum-

mation of global inner products, which lead to slightly different trajectories to the same steady state. The

Origin is the fastest per processor (achieving the highest percentage of peak sequentially). The T3E has the

25x 104

Avg Vertices per Proc.

128 256 384 512 640 768 896 1024

2500

2000

1500

1000

500

Execution Time (s)

II
128 256 384 512 640 768 896 1024

3,2

0.8i
i

0.6

0.4

0.2

;mplementation E_ffici_ency _-] Nonlinear Iterations]

0
128 256 384 512 640 768 896 1024 128 256 384 512 640 768 896 1024

80

60

40

20

0

Mflop/s per Proc.

128 256 384 512 640 768 896 1024

8O

Aggregate Gflop/s

601-

401-

20i-

o|
128 256 384 512 640 768 896 1024

F1c, 5.l. Parallel performance for a fixed size mesh of 2.8 million vertices run on up to 1024 Cray TSE 600 MHz Alpha

processors.

TABLE 5.]

Transonic flow over M6 wing; fixed-size mesh of 357,900 vertices.

No. CrayT3E IBM SP SGI Orion

Procs. Steps]._Time left. Steps [Time [Eft. , Steps Time [Eft.

16 55 2406s -- 55 1920s -- 55 i 1616s --

32 57 1331s .90 57 ll00s .87 56 i 862s .94

48 57 912s .88 57 771s .83 56 i 618s .87

64 57 700s .86 56 587s .82 57 493s .82

80 57 577s .83 59 548s .70 57 420s .77
L

best scalability, due to its torus network, which is fast compared with sequential processor performance. The

full problem fits on smaller numbers of processors on the Origin, but "false" superunitary parallel scalability

results because of the cache thrashing when too many vertices are assigned to a processor; 5,000 to 20,000

vertices per processor is a reasonable load for this code.

Avg.Verticesper Proc.

121 ImplementationEfficiency

l ExecutionTima (s)

NonlinearIterations

Mflop/s per Proc. AggregateGflop/s

_86 512

FIe:. 5.2. Parallel performance for" a fixed size mesh of 2.8 million vertices run on up to 2048 ASCI Red 333 MHz Pentium

Pro processors.

A plot showing aggregate flop/s performance and a log-log plot showing execution time for our largest

case on the three most capable machines to which we have thus far had access are shown in Figures 5.3 and

5.4. In both figures, lines of unit slope (positive and negative, resp.) show the departure from optimality.

Note that although the ASCI Red flop/s rate scales nearly linearly, a higher fraction of the work is redundant

at higher parallel granularities, so the execution time does not drop in exact proportion to the increase in

flop/s.

5.4. Parallel Sealabillty across Flow Regimes. Trans-Mach convergence comparisons of the same

problem are given in Table 2. Here efflciencies are normalized by the number of timesteps, to factor con-

vergence degradation out of the performance picture and measure implementation factors alone (though

convergence degradation with increasing granularity is modest). The number of steps increases dramatically

with the nonlinearity of the flow, as Mach rises; however, the linear work per step decreases on average.

Reasons for this include smaller pseudo-timesteps in early nonlinear iterations and the increased hyperbol-

icity of the flow. Tt:e compressible Jacobian is far more complex to evaluate, but its larger blocks (5 × 5

instead of 4 × 4) concentrate locality, achieving much higher computational rates than the corresponding

8

30O

250

20O

150

100

5O

104

i , , , , t

Aggregate Gflop/s
vs # nodes

/

. _ Asci Red

..' #_ zd /"'

.__ AscJ Blue
I I I I I

500 1000 1500 2000 2500 3000 3500

FTC. 53. Fixed-size parallel scaling results: flop/s.

Execution Time (s)
vs # nodes

103

AsciBlue

"_T3E

Asci Red

...... I

103

FIG, 5.4, Fixed-size parallel scaling results: execution time.

4000

0 4

incompressible Jacobian.

6. Conclusion. High sustained scalable performance has been demonstrated on simulations that use

implicit algorithms of choice for unstructured PDEs. In the history of the peak performance Bell Prize

competition, PDE-based computations have led (or been part of leading entries containing multiple appli-

cations) in 1988, 1989, 1990, and 1996. All of these leading entries have been obtained on vector or SIMD

architectures, and all were based on structured meshes. The l&st (1996) and most impressive of these PDE-

based entries was executed on 160 vector nodes of the Japanese Numerical Wind Tunnel (NWT), and ran

at 111 Gflop/s. The 227 Gflop/s sustained performance of our unstructured application on a hierarchical

distributed memory multiprocessor in the SPMD programming style exceeds that of the 1996 entry by a

TABLE5.9
Flow over M6 wing on SGI Origin; fixed-size mesh of 357,900 vertices (1,4.71,600 DOFs incompressible, t,789,500 DOFs

compressible).

No. II tl Time per Per-Step Impl. FcnEval [JacEval

Procs. _ Step Speedup [Eft. _ Mflop/s i Mflop/s

Incompressible (4 × 4 blocks)

16 41.6s

32 20.3s

48 14.1s

64 11.2s

80 10.1s

16

32

48

64

80

16

32

48

64

80

-- _ 2,630

2.05 5,366

2.95 7,938

3.71 10,545

4.13 11,661

Subsonic (Mach 0.30) (5 x 5 blocks)

359

736

1,080

1,398

1,592

17

19

19

20

55.4s

29.8s

20.5s

14.3s

12.7s

-- 093 2,0021.86 3,921

2.71 0.90 5,879

3.88 / 0.97 [8,180

4.36 _ 9,452

Transonic (Math 0.84) (5 x 5 blocks)

2,698

5,214

7,770

10,743

12,485

29.4s

15.4s

11.0s

8.7s

7.4s

-- _ 2,009

1.91 4,145

2.66 5,942

3.39 8,103

3.99 9,856

Supersonic (Mach 1.20) (5 x 5 blocks)

2,736

5,437

7,961

10,531

12,774

16 _ 19.2s

32 lO.6s

48 7.1s

64 5.8s

80 4.6s

-- _ 2,025

1.81 3,906

2.72 6,140

3.31 7,957

4.20 9,940

2,679

5,275

7,961

10,398

12,889

factor of two.

The achieved flop/s rate is less important to computational engineers than are solutions per minute of

discrete systems that are general enough to be employed in production design, as PETSc-FUN3D is now

employed. In addition, PETSc-FUN3D is a portable message-passing application that runs on a variety of

platforms with good efficiency, thus lowering the total cost of achieving high performance over the lifetime

of the application.

7. Acknowledgments. Computer time was sut)plied by Argonne National Laboratory, Lawrence Liv-

ermore National Laboratory, NERSC, Sandia National Laboratory, and SGI-Cray.

REFERENCES

[1] _V. K. ANDERSON AND D. L. BONIIAUS, An implicit upwind algorithm for computing turbulent flows

on unstructured grids, Computers and Fluids, 23 (1994), pp. 1 21.

10

[2] W. K. ANDERSON, R. D. R:_USCH, AND D. L. BONHAUS, Implicit/multigrid algorithms for incompress-

iblc turbulent flows on unstructured grids, Journal of Comlmtational Physics, 128 (1996), pp. 391

408.

[3] D. F. BAILEY, How to fool the masses when reporting results on parallel computers, Supercomputing

Review, (1991), pp. 54 55.

[4] S. BALAY, r_V. GROPP, L. C. MCINNES, .AND B. SMITtt, The Portable, ExtensibIe, Toolkit for Scientific

Computing (PETSc) vet. 22. http ://www.mcs. anl. gov/petsc/petsc.html, 1998.

[5] X. C. CAI, Some domain decomposition algorithms for" nonselfadjoint elliptic and parabolic partial

differential equations, Technical Report 461, Courant Institute, New York, 1989.

[6] H. E. CRUSADEa, Peak performance versus bandwidth. HPCC \\>ek, November 1998.

[7] --, Towards a U.S. sparse-matrix policy. HPCC Week, December 1998.

[8] \V. D. GROPP, D. K. KAUSItlK, D. E. KEYES, AND B. F. SMITII, Toward realistic performance bounds

for implicit CFD codes, in Proceedings of Parallel CFD'99, A. Ecer et al., eds., Elsevier, 1999.

[9] \\7. D. GrtoPP, L. C. MCINNES, M. D. TIDRmI, AND D. E. KEYES, Parallel implicit PDE computa-

tions, in Proceedings of Parallel CFD'97, A. Ecer et al., eds., Elsevier, 1997, pp. 333 344.

[10] G. KArtYPiS AND V. KtrMAR, A fast and high quality schema for partitioning irregular graphs, SIAM

J. Scientific Computing, 20 (1999), pp. 359 392.

[11] D. K. KAUSHII<, D. E. KEYES, AND B. F. S._ITH, On the interaction of architecture and algorithm

in the domain-based parallelization of art unstructured grid incompressible flow code, in Proceedings

of the 10th International Conference on Domain Decomposition Methods, J. Mandel et al., eds.,

Wiley, 1997, pp. 311- 319.

[12] --., Newton-KryIov-Sehwarz methods for" aerodynamic problems: Compressiblc and incompressible

flows on unstructured grids, in Proceedings of the l lth International Conference on Domain Decom-

position Methods, C.-H. Lai et al., eds., Domain Decomposition Press, Bergen, 1999.

[13] C. T. KELLEY AND D. E. KEYES, Convergence analysis of pseudo-transient continuation, SIAM J.

Numerical Analysis, 35 (1998), pp. 508 523.

[14] D. E. KEYES, How scalable is domain decomposition in practice?, in Proceedings of the llth Interna-

tional Conference on Domain Decomposition Methods, C.-H. Lai et al., eds., Domain Decomposition

Press, Bergen, 1999.

[15] J. D. MCCALPIN, STREAM: Sustainable memory bandwidth in high performance computers, tech. rep.,

University of Virginia, 1995. http ://www. cs. virginia, edu/stream.

[16] B. F. SMITII, P. BJORSTAD, .AND W. GROPP, Domain Decomposition, Cambridge University Press,

1996.

[17] P. R. SPALAWr AND S. R. ALLMARAS, A one-equation turbulence model for aerodynamic flows, La

Recherche Aerospatiale, 1 (1994), pp. 5 21.

[18] G. \\rANG AND D. K. TAFTI, Performance enhancements on microprocessors with hierarchical memory

systems for" solving large sparse linear systems, Int. J. High Performance Computing Applications,

13 (1999), pp. 63 79.

11

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Publicreportingburdenforthiscollectionof informationisestimatedto average1 hourperresponse,includingthetimefor reviewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthe dataneeded,andcompletingandreviewingthe colle<tionof information.Sendcommentsregardingthis burdenestimateoranyotheraspectofthis
collectionof information,includingsuggestionsfor reducingthisburden,to WashingtonHeadquartersServices,Directoratefor InformationOperationsandReports,1215Jefferson
DavisHighway,Suite1204,Arlington,VA 22202-4302,andto the Officeof ManagementandBudget,PaperworkReductionProject(0704-0188),Washington,DC20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 2000 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Achieving high sustained performance in an unstructured mesh CFD

application

6. AUTHOR(S)

W.K Anderson, W.D. Gropp, D.K. Kaushik,

D.E. Keyes, and B.F. Snfith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Comtmter Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, \'A 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Adnfinistration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 2000-2

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2000-210080

ICASE Report No. 2000-2

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

To appear in the Proceedings of SC'99.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified- Unlimited

Subject Category." 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This paper highlights a three-year project by an interdisciplinary team on a legacy F77 computational fluid dynamics
code, with the aim of demonstrating that implicit unstructured grid sinmlations can execute at rates not far from

those of explicit structured grid codes, provided attention is paid to data motion complexity and the reuse of data

positioned at the levels of the memory hierarchy closest to the processor, in addition to traditional operation count

complexity. The dmnonstration code is fronl NASA and the enabling parallel hardware and (freely available) software
toolkit, are from DOE, but the resulting methodology should be broadly applicable, and the hardware limitations

exposed should allow programmers and vendors of parallel platforms to focus with greater encouragement on sparse

codes with indirect addressing. This snapshot of ongoing work shows a performance of 15 microseconds per degree
of freedom to steady-state convergence of Euler flow on a mesh with 2.8 million vertices using 3072 dual-processor

nodes of Sandia's "ASCI Red" Intel machine, corresponding to a sustained floating-point rate of 0.227 Tflop/s.

14. SUBJECT TERMS
high-perfornlance computing, parallel implicit solvers, computational aerodynamics,

memory-centric computation

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

JSN 7540-01-280-5500

15. NUMBER OF PAGES
16

16. PRICE CODE

AQ_
20. LIMITATION

OF ABSTRACT

itandard Form 298(Rev. 2-89)
PrescribedbyANSIStd. Z39-1B
298-102

